Subgrid analysis of liquid jet atomization
نویسندگان
چکیده
The objective of this paper is to study the feasibility of large eddy simulations of a liquid fuel injection in combustion chambers. To do so, a priori analyses of direct numerical simulations are carried out. A complete liquid jet atomization, from the injector down to the end of the liquid core, is simulated thanks to the coupling of both level-set and VOF formulations. To avoid the apparition of a subgrid term in the right hand side of the continuity equation, the choice was made to consider an incompressible formulation as far as the filtering operator is concerned. The corresponding LES transport equations and various subgrid contributions are thus presented. Results are first dedicated to the estimation of the various orders of magnitude of these subgrid terms. In a second part, classical eddy viscosity scale similarity models are tested against the prevalent ones. It appears that, contrary to a Smagorinsky formulation, the scale similarity assumption provides a better estimation of the subgrid terms. This result is found for all locations that have been considered in the jet: at the injection level or in the atomized area. The major drawback is the presence of a constant that needs to be estimated. Various values are found depending on the filter size.
منابع مشابه
High-fidelity Simulation of High Density-Ratio Liquid Jet Atomization in Crossflow with Experimental Validation
Liquid jet atomization in cross-flowing gas is a critical phenomenon in the fuel preparation process and controls combustor efficiency and emissions. Quantitative experimental studies of atomization have been rare due to limited optical access to the near-field dense spray region. High fidelity multiphase flow simulation has shown promise as an alternative approach for scrutinizing the complex ...
متن کاملAnalysis of Liquid Nitrogen Spray Atomization Characteristics by Internal-Mixing Atomizers
The atomization effect is an important factor of the heat transfer of liquid nitrogen spray. In this paper, two kinds of internal-mixing twin-fluid atomizers were design. According to the fracture theory and fluid mechanics, the model is established to simulate atomization effect. The results showed that: Internal-mixing atomizers, with the liquid nitrogen atomization size from 20um to 40um, ha...
متن کاملModeling of Turbulence Effects on Liquid Jet Atomization
Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experim...
متن کاملDetailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
This paper presents numerical simulation results of the primary atomization of a turbulent liquid jet injected into a gaseous crossflow. Simulations are performed using the balanced force refined level set grid method. The phase interface during the initial breakup phase is tracked by a level set method on a separate refined grid. A balanced force finite volume algorithm together with an interf...
متن کاملModeling of Turbulence Effects on Liquid
Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experim...
متن کامل